Embeddings of cubic Halin graphs: Genus distributions
نویسندگان
چکیده
منابع مشابه
Embeddings of Cubic Halin Graphs: Genus Distributions∗
We derive an O(n)-time algorithm for calculating the genus distribution of a given 3-regular Halin graph G; that is, we calculate the sequence of numbers g0(G), g1(G), g2(G), . . . on the respective orientable surfaces S0, S1, S2, . . . . Key topological features are a quadrangular decomposition of plane Halin graphs and a new recombinant-strands reassembly process that fits pieces together thr...
متن کاملGenus Distributions of Cubic Outerplanar Graphs
We present a quadratic-time algorithm for computing the genus distribution of any 3-regular outerplanar graph. Although recursions and some formulas for genus distributions have previously been calculated for bouquets and for various kinds of ladders and other special families of graphs, cubic outerplanar graphs now emerge as the most general family of graphs whose genus distributions are known...
متن کاملGenus Distributions of cubic series-parallel graphs
We derive a quadratic-time algorithm for the genus distribution of any 3-regular, biconnected series-parallel graph, which we extend to any biconnected series-parallel graph of maximum degree at most 3. Since the biconnected components of every graph of treewidth 2 are series-parallel graphs, this yields, by use of bar-amalgamation, a quadratic-time algorithm for every graph of treewidth at mos...
متن کاملStrong edge-coloring for cubic Halin graphs
A strong edge-coloring of a graph G is a function that assigns to each edge a color such that two edges within distance two apart must receive different colors. The minimum number of colors used in a strong edge-coloring is the strong chromatic index of G. Lih and Liu [14] proved that the strong chromatic index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains an open...
متن کاملGenus distributions of orientable embeddings for two types of graphs
Abstract On the basis of the joint tree model introduced by Liu in 2003, the genus distributions of the orientable embeddings for further types of graphs can be obtained. These are apparently not easily obtained using overlap matrices, the formula of Jackson, etc. In this paper, however, by classifying the associated surfaces, we calculate the genus distributions of the orientable embeddings fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ars Mathematica Contemporanea
سال: 2012
ISSN: 1855-3974,1855-3966
DOI: 10.26493/1855-3974.217.440